Regulation GRBT-20	Godavari institute of Engineering & Technology (Autonomous)							
Course Code	HIDDAMENTALS OF DICTEAL BLECTRONICS	I B.Tech I Sem.						
Teaching	Total contact hours-48	L	T	P	С			
Prerequisite(s): Number systems					3			

Course Objective(s):

- ➤ Understand the concepts of Binary system and conversions.
- ➤ Be familiar with the concepts of logical functions using Boolean algebra
- ➤ Learn various combinational circuits.
- ➤ Understand the functionality of flip flops and design of sequential circuits.

Course Outcome(s):

After successful completion of this course, a student will be able to-

- **CO-1:** Understand various number systems, conversions, range and error detecting and Correcting codes and their significance.
- **CO-2:** Evaluate the minimization of logic gates using Boolean algebraic principles.
- **CO-3:** Evaluate the minimization of Boolean algebra using K-maps.
- **CO-4:** Design various simple and complex combinational circuits with real time applications.
- **CO-5:** Analyze the basic principles behind Flip flops and the design of sequential circuits with real time applications.

UNIT-1

Number Systems: Binary, Octal, Hex Decimal, and Conversions, Range; Binary additions and subtractions (using 1'c, and 2'c), concept of overflow; representations of negative numbers using 1's and 2's complement and range; BCD numbers: Representation of 8421, 2421, Ex-3, Gray and self-complementary codes; additions and subtractions on 8421 codes; Error detecting codes: even, odd parity.

UNIT-2

Logic Gates and Boolean Algebra: Boolean Algebra and Digital Logic GATES, Basic Boolean Laws and properties; Boolean functions; canonical and standard forms (SOP, POS); Error correcting codes: hamming codes, block parity codes.

UNIT-3

Combinational Logic Circuits: Definition of combinational circuits, design procedure for half, full, decimal (8421), Gate minimization using three and four variable K-Map's with and without don't cares.

UNIT-4

Adders and Subtractors; Combinational Circuit Design for BCD code converters; Encoders, Decoders, Multiplexers, D-Multiplexers.

UNIT-5

Sequential Logic Circuits: Classification of Sequential circuits, latches, Flip Flops with truth tables and excitation tables, Registers and Different types of registers-shift register, bi-directional shift register.

Text Books

- 1. "Digital Design" Third Edition, M. Morris Mano, Pearson Education/PHI.
- 2. "Digital Logic and Computer Organization", V Rajaraman, T. Radhakrishnan, PHI, 2009.

Reference Books

- 1. "Switching and Finite Automata Theory", 3/e, Kohavi, Jha, Cambridge.
- 2. Digital Logic Design, Leach, Malvino, Saha, TMH
- 3. Modern Digital Electronics, R.P. Jain, TMH

CO-PO Mapping:

(1: Slight [Low]; 2: Moderate[Medium]; 3: Substantial[High], '-': No Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	-	-	-	3	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-